

FUTEBOL UFRGS User Manual

Draft
Revision 0.1

Authors Hugo Santos - Universidade Federal do Rio Grande do Sul
Gustavo Araújo - Universidade Federal do Rio Grande do Sul

Version 0.1

Abstract This document is a manual for the end-users of the FUTEBOL UFRGS testbed.
It describes how to reserve the resources available at the UFRGS testbed, and
also presents simple experiments that can be performed using those resources.
Using those examples, the user will be able to build his/her own experiments.

This project has received funding from the European Union's
Horizon 2020 for research, technological development, and
demonstration under grant agreement no. 688941 (FUTEBOL),
as well from the Brazilian Ministry of Science, Technology and
Innovation (MCTI) through RNP and CTIC.

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 12/11/2017 Description of how to allocate

Raspberry Pis, COPA and
ZigBee

© FUTEBOL Consortium 2016-2019 Page 2 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Table of Contents

1 Testbed Architecture

2 Functional Layers

3 Setting up an Experiment

4 IoT Experimentation Units

5 IoT Federation and RSpec Description

6 IoT Tutorial
6.1 Experiment Description
6.2 Resource Allocation
6.3 Coding
6.4 Generating and running the executables

7 COPA Experiment units

8 Federation and RSpec Description

9 COPA Tutorial
9.1 Experiment Description
9.2 Resource Allocation
9.3 Register VMs
9.4 Tunneling the COPA Web Interface
9.5 Creating container in COPA Web Interface
9.6 COPA Web Interface

© FUTEBOL Consortium 2016-2019 Page 3 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

1 Testbed Architecture

In this testbed, we address the needs of an optical-wireless infrastructure to provide
ubiquitous Internet of Things (IoT) communication, involving devices ranging from low
complexity sensors and actuators (e.g., luminosity and smart light bulbs) to more advanced
ones (e.g., multimedia sensors and smart glasses). We employ 16 Raspberries Pi connected
to 8 XBee ZigBee RF modules through XBee Explorer USB adapters. The raspberries are
connected with 16 Arduinos equipped with XBee Arduino shields, temperature, luminosity
and humidity sensors. Together these IoT devices enable the realization of data collection,
data processing, computing routine delegation, event creation based on monitoring results
and data storage in the cloud. Therefore, this facility is ideally equipped to investigate the
combination of various physical layer approaches into coexisting or coherent networks.

Fig 1. IoT Test layout

2 Functional Layers
Logically, one can think of the testbed as consisting of four layers: The bottom layer provides
the physical elements, such as servers, raspberries, arduino, XBees, storage, etc., that can
be controlled through one hypervisors. The next layer corresponds to the virtualized
testbed, comprising containers/VM associated to the physical IoT devices. Finally, at the top
sits the definition of each experiment that uses the resources provided by the lower layer.

© FUTEBOL Consortium 2016-2019 Page 4 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Fig 2. Functional layers

3 Setting up an Experiment

With their own hardware, users will be able to setup an experiment using jFed. This allows
users to send information that will communicate with the Aggregate Manager (AM) gateway
for authentication and to receive information about what resources are available. The AM will
interact with the Cloud Based Testbed Manager (CBTM) to setup Experimentation Units.
The CBTMs act as software defined radio transmitters and receivers.

After the user send information, the AM will authenticate users, tell them which resources will
be available to them through RSpecs, and interact with the CBTM on behalf of the users in
order to instantiate the available resources. The AM uses the GENI v3 API which is written
as a wrapper of the reference AM.

The principal responsibility of the CBTM is to create virtual machines in the servers, where
the users will be able to run experiment specific software. The CBTM will interact with the
KVM Hypervisor. We are currently running CBTM v2.0, which is written in Python and use
libvirt libraries to interact with the KVM hypervisor.

© FUTEBOL Consortium 2016-2019 Page 5 of 18

http://doc.fed4fire.eu/getanaccount.html
http://doc.fed4fire.eu/getanaccount.html
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Fig 3. IoT testbed diagram

4 IoT Experimentation Units
An IoT Experimentation Unit consists of one Raspberry Pi and two Arduinos with the
following capabilities:

The hardwares for experimentation are:

● Raspberry Pi 3 Model B
○ Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
○ 1GB RAM
○ BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

● Arduino Uno
○ ATmega328P 16MHz
○ Flash Memory 32KB
○ SRAM 2KB
○ EEPROM 1KB

● XBee S2C with Explorer USB Adapter
● XBee S2C Arduino Shield
● Humidity, luminosity and temperature sensors

The Experimentation unit are as following:

● Raspberry equipped with 2 Arduinos sensor set and a Arduino XBee Shield labelled
as raspberry-arduino-sensor

● Raspberry equipped with 2 Arduinos and a XBee Shield labelled as
raspberry-arduino

● Raspberry equipped with 1 XBee Explorer USB labelled as raspberry-xbee

Up to 6 units as raspberry-arduino-sensor, up to 2 raspberry-arduino and up to 8
raspberry-xbee can be used in an experiment, and users simply SSH into the raspberry to
run the experiments.

© FUTEBOL Consortium 2016-2019 Page 6 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

5 IoT Federation and RSpec Description
The UFRGS testbed is managed by a software stack, constituted by the Aggregate
Manager, the Coordinator and the Cloud Based Testbed Manager (CBTM). This stack is
accessed by the jFed Experimenter GUI at the entry point of the testbed, which is the
Aggregate Manager. The resources provided by the testbed include: virtual machines and
LAN connectivity. Their slicing is performed as follows:

● For virtual machines: The selection of which type of virtualization will be based on
the sliver type, which separates the available resources by the available hardware,
and the operating system image. According to the selected sliver, a different
hardware configuration will be made available, for example, a Raspberry Pi. An OS
image can also be specified in order to further customize the node, for example,
selecting an image with a specific software pre-installed.

● LAN connectivity: interconnectivity is provided transparently to the experimenter
either using virtual or hardware switches. For the hardware switches, the slicing is
performed using a divisor (e.g. FlowVisor, OpenVirteX [FLOWVISOR,
OPENVIRTEX]), in order to isolate the networks from different experimenters.

IoT Nodes: the Experimenter can choose between access to a:

● Raspberry with XBee USB Explorer Adapter and Raspbian OS. There are up to 8
and can be allocated informing the RSpec the sliver type “raw-raspberry”.

The Raspberry Pi mote with XBee USB Explorer Adapter RSPEC can be set as follows:

<node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+32">
 <sliver_type name="raw-raspberry"/>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="331.0" y="127.0"/>
 </node>

6 IoT Tutorial

6.1 Experiment Description
An example to deploy a simples experiment with IoT is to reserve two raw-raspberry units
to communicate between each other. The raspberry #1 runs a python serial data sender
application to the XBee module. The XBee module of raspberry #2 collects the data through
a python serial data receiver application and prints on a terminal screen.

© FUTEBOL Consortium 2016-2019 Page 7 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

6.2 Resource Allocation
At jFed, the following RSPEC allocates two raspberries in the UFRGS testbed.

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request" generated_by="jFed
RSpec Editor" generated="2017-11-17T10:15:21.848-02:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vlan/1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="node0" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+31">
 <sliver_type name="raw-raspberry"/>

© FUTEBOL Consortium 2016-2019 Page 8 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="131.5" y="128.5"/>
 </node>
 <node client_id="node1" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+32">
 <sliver_type name="raw-raspberry"/>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="331.0" y="127.0"/>
 </node>
</rspec>

6.3 Coding
For this to occur, firstly the XBee module are pre-configured with PAN ID 1234, API mode 1
and all of them runs as coordinator to simplify the network creation. The main part of the
receiver application sets the given USB port of the USB Xplorer Xbee and the bandwidth
rate. After that, a Xbee demands a initialization in bypass mode to properly work at this
configuration. The describe part of the is as follows:

 private static final String PORT = "/dev/ttyUSB0";
 private static final int BAUD_RATE = 9600;
 ...
 XBeeDevice myDevice = new XBeeDevice(PORT, BAUD_RATE);
 try {

SerialPortRxTx serPort = new SerialPortRxTx(PORT, BAUD_RATE);
serPort.open();
serPort.writeData("\n\n".getBytes()); //wake boot menu up
Thread.sleep(1000);
serPort.writeData("B".getBytes()); //initiate bypass mode
Thread.sleep(1000);
serPort.close();

myDevice.open();
myDevice.addDataListener(new MyDataReceiveListener());
System.out.println("\n>> Waiting for data...");

 ...

The Receiver Java project can be found on path:
~/projeto/XBJL-1.2.1/examples/communication/ReceiveDataSample

The sender application also sets USB port and serial bandwidth rate, also initialize at bypass
mode and periodically sends the message “Hello! I am RECEIVER, USB1!”. The main part of
the code are as follows:

© FUTEBOL Consortium 2016-2019 Page 9 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

private static final String PORT = "/dev/ttyUSB1";
private static final int BAUD_RATE = 9600;
private static final String DATA_TO_SEND = "Hello! I am RECEIVER, USB1!";
private static final String REMOTE_NODE_IDENTIFIER = "SENDER";

public static void main(String[] args) {
 ...
 XBeeDevice myDevice = new XBeeDevice(PORT, BAUD_RATE);
 byte[] dataToSend = DATA_TO_SEND.getBytes();
 try {

SerialPortRxTx serPort = new SerialPortRxTx(PORT, BAUD_RATE);
serPort.open();
serPort.writeData("\n\n".getBytes()); //wake boot menu up
Thread.sleep(1000);
serPort.writeData("B".getBytes()); //initiate bypass mode
Thread.sleep(1000);
serPort.close();

myDevice.open();
// Obtain the remote XBee device from the XBee network.
XBeeNetwork xbeeNetwork = myDevice.getNetwork();
RemoteXBeeDevice remoteDevice =

xbeeNetwork.discoverDevice(REMOTE_NODE_IDENTIFIER);
if (remoteDevice == null) {
 System.out.println("Couldn't find the remote XBee device with '" +

REMOTE_NODE_IDENTIFIER + "' Node Identifier.");
 System.exit(1);
}

System.out.format("Sending data to %s >> %s | %s... ",

remoteDevice.get64BitAddress(),
 HexUtils.prettyHexString(HexUtils.byteArrayToHexString(dataToSend)),
 new String(dataToSend));
myDevice.sendData(remoteDevice, dataToSend);
System.out.println("Success");

 ...

The Sender Java project can be found on path:
~/projeto/XBJL-1.2.1/examples/communication/SendDataSample

6.4 Generating and running the executables
Firstly, the code need to be interpreted by the JDK and the steps for the Receiver
application are as follows:

cd ~/projeto/XBJL-1.2.1/examples/communication/ReceiveDataSample

javac -sourcepath src -classpath
"libs/xbee-java-library-1.2.1.jar:libs/rxtx-2.2.jar:libs/slf4j-api-1.7.12.jar:libs/slf4j-nop-1.7.12.j

© FUTEBOL Consortium 2016-2019 Page 10 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

ar:libs/android-sdk-5.1.1.jar:libs/android-sdk-addon-3.jar" -d bin
src/com/digi/xbee/api/receivedata/*.java

cd bin/

jar cvfm ../myReceiveDataSample.jar ../manifest.mf com/digi/xbee/api/receivedata/*.class

cd ..

Set run permission for the generated JAR:

chmod +x myReceiveDataSample.jar

And finally run it with:

java -jar myReceiveDataSample.jar

A similar process occurs for the Sender application and the terminal are as follows:

cd ~/projeto/XBJL-1.2.1/examples/communication/SendDataSample

javac -sourcepath src -classpath
"libs/xbee-java-library-1.2.1.jar:libs/rxtx-2.2.jar:libs/slf4j-api-1.7.12.jar:libs/slf4j-nop-1.7.12.j
ar:libs/android-sdk-5.1.1.jar:libs/android-sdk-addon-3.jar" -d bin
src/com/digi/xbee/api/senddata/MainApp.java

cd bin/

jar cvfm ../mySendDataSample.jar ../manifest.mf
com/digi/xbee/api/senddata/MainApp.class

cd ..

Set run permission as:

chmod +x mySendDataSample.jar

And run it with:

java -jar mySendDataSample.jar

To test this scenario, open two ssh sessions on the raspberry-xbee unit and run the
program senddata.java on raspberry #1 and receivedata.java on raspberry #2.

The complete code is available on annex.That is it! Enjoy!

© FUTEBOL Consortium 2016-2019 Page 11 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

7 COPA Experiment units

Virtualized resources are divided in container pool VM, that is the container support system
and, COPA VM, which is the web-based administration interface. The virtualialized resource
for experimentation are:

● Virtual Machine
○ Virtualized single core CPU
○ 4GB RAM memory
○ Storage size 12GB

The Experimentation unit are as following:

● VM carrying COPA tool with:
○ sliver_type: default-vm
○ disk_image: urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+copa

● VM carrying a container pool with:
○ sliver_type: default-vm
○ disk_image: urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+pool

Both COPA VM and container pool VM are using the same amount of virtualized resources
(e.g. CPU, memory, etc).

8 Federation and RSpec Description
The UFRGS testbed is managed by a software stack, constituted by the Aggregate
Manager, the Coordinator and the Cloud Based Testbed Manager (CBTM). This stack is
accessed by the jFed Experimenter GUI at the entry point of the testbed, which is the
Aggregate Manager. The resources provided by the testbed include: virtual machines and
LAN connectivity. Their slicing is performed as follows:

● For virtual machines: The selection of which type of virtualization will be based on
the sliver type, which separates the available resources by the available hardware,
and the operating system image. According to the selected sliver, a different
hardware configuration will be made available, for example, a COPA VM. An OS
image can also be specified in order to further customize the node, for example,
selecting an image with a specific software pre-installed.

Those resources provide some parameters that can be controlled remotely, e.g. by a SDN
controller. Each type of device will provide different parameters, which are listed below, as
well as how those are accessed:sources provide some parameters that can be controlled
remotely, e.g. by a SDN controller.

The COPA VM RSPEC can be set as follows:

<node client_id="copa" exclusive="true"

© FUTEBOL Consortium 2016-2019 Page 12 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+5">
 <sliver_type name="default-vm">
 <disk_image name="urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+copa"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="103.0" y="99.5"/>
 </node>

The Pool VM RSPEC can be set as follows:

<node client_id="central" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+4">
 <sliver_type name="default-vm">
 <disk_image name="urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+pool"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="259.0" y="99.5"/>
 </node>

9 COPA Tutorial

9.1 Experiment Description
An example to deploy a simple experiment with COPA is to reserve two VMs units to
manage through COPA. The VM #1 runs the COPA tool. The VM #2 runs an ordinary VM
and the management is made by the web interface of COPA.

9.2 Resource Allocation
At jFed, edit the RSpec in the RSpec Editor tab. This shows how to set RSPECs Editor at
jFed.

© FUTEBOL Consortium 2016-2019 Page 13 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

And edit the text as follows:

<?xml version='1.0'?>
<rspec xmlns="http://www.geni.net/resources/rspec/3" type="request" generated_by="jFed
RSpec Editor" generated="2017-10-24T12:44:31.024-02:00"
xmlns:emulab="http://www.protogeni.net/resources/rspec/ext/emulab/1"
xmlns:delay="http://www.protogeni.net/resources/rspec/ext/delay/1"
xmlns:jfed-command="http://jfed.iminds.be/rspec/ext/jfed-command/1"
xmlns:client="http://www.protogeni.net/resources/rspec/ext/client/1"
xmlns:jfed-ssh-keys="http://jfed.iminds.be/rspec/ext/jfed-ssh-keys/1"
xmlns:jfed="http://jfed.iminds.be/rspec/ext/jfed/1"
xmlns:sharedvlan="http://www.protogeni.net/resources/rspec/ext/shared-vlan/1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geni.net/resources/rspec/3
http://www.geni.net/resources/rspec/3/request.xsd ">
 <node client_id="central" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+4">
 <sliver_type name="default-vm">
 <disk_image name="urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+pool"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="259.0" y="99.5"/>
 </node>
 <node client_id="edge" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"

© FUTEBOL Consortium 2016-2019 Page 14 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+6">
 <sliver_type name="default-vm">
 <disk_image name="urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+pool"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="429.0" y="100.5"/>
 </node>
 <node client_id="copa" exclusive="true"
component_manager_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am"
component_id="urn:publicid:IDN+futebol.inf.ufrgs.br+authority+am+node+5">
 <sliver_type name="default-vm">
 <disk_image name="urn:publicid:IDN+futebol-cbtm.inf.ufrgs.br+image+copa"/>
 </sliver_type>
 <location xmlns="http://jfed.iminds.be/rspec/ext/jfed/1" x="103.0" y="99.5"/>
 </node>
</rspec>

9.3 Register VMs

Double click on the edge and central nodes to open up a terminal window. Accept the ssh
connection and type ifconfig to obtain the ip address on the lxdbr0 interface.

In this example case, the ip addresses were 192.168.5.83 for the central node. For the edge
node was 192.168.5.84.

Open up a terminal window on the copa node, accept the ssh connection and edit the file
located at /copa/server.txt 99 53

In this example case, the content of the file is as follows:

Central;192.168.5.83:8443

Edge;192.168.5.84:8443

9.4 Tunneling the COPA Web Interface
For this to occur,open up a terminal on the COPA VM, and copy the highlighted command
from the terminal screen. Note that the parameter of this messages everytime you load an
experiment at jFed. You need to follow some steps. The Figure X shows the highlighted
command on the terminal screen.

© FUTEBOL Consortium 2016-2019 Page 15 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

In this example case, the copied command is:

SSH_AUTH_SOCK=/tmp/ssh-Shc5buDu3xTV/agent.21196; export

SSH_AUTH_SOCK;SSH_AGENT_PID=21198; export SSH_AGENT_PID;

ssh -A -X -i

'/home/hu/.jFed/login-certs/b0bdc8a47e3b7ed3b02eddca7ea4c0aa.pem'

hu@192.168.5.68 -oPort=22 -oProxyCommand="ssh -i '/home

/hu/.jFed/login-certs/b0bdc8a47e3b7ed3b02eddca7ea4c0aa.pem' -oPort=22

hu@futebol-cbtm.inf.ufrgs.br -W %h:%p"

Open up a terminal on your computer and adds the string to the end of the copied command:

-L 8000:localhost:8000 -L 8100:localhost:8100

The tunneling then will be made with the command bellow:

SSH_AUTH_SOCK=/tmp/ssh-Shc5buDu3xTV/agent.21196; export

SSH_AUTH_SOCK;SSH_AGENT_PID=21198; export SSH_AGENT_PID;

ssh -A -X -i

'/home/hu/.jFed/login-certs/b0bdc8a47e3b7ed3b02eddca7ea4c0aa.pem'

hu@192.168.5.68 -oPort=22 -oProxyCommand="ssh -i '/home

/hu/.jFed/login-certs/b0bdc8a47e3b7ed3b02eddca7ea4c0aa.pem' -oPort=22

hu@futebol-cbtm.inf.ufrgs.br -W %h:%p" -L 8000:localhost:8000 -L
8100:localhost:8100

Next, open up your browser and type the address:

http://localhost:8000/core/welcome/

9.5 Creating container in COPA Web Interface
Browse to the add container tab and add two containers. Name your container and pick
which node will host the container in the Container pool dropdown. In this example we added
BBU1 to the edge node, shown on Figure 4, and GW1 to central node, shown on Figure 5.
Remember to wait up to 2 minutes for the container creation message on the top of the
screen.

© FUTEBOL Consortium 2016-2019 Page 16 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Figure 4. Creation of BBU1 on the edge Container pool.

Figure 5. Creation of GW1 on the central Container pool.

9.6 COPA Web Interface

The COPA web interface shows some informations about the created containers and it
provides some operations, such as, start or stop container, open a terminal window, freeze
or migrate a container to another container pool. Figure 6 shows the COPA web interface.

© FUTEBOL Consortium 2016-2019 Page 17 of 18

FUTEBOL – H2020 688941

E3.1: IoT Assessment Manual

Figure 6. Container list

© FUTEBOL Consortium 2016-2019 Page 18 of 18

